You're reading the documentation of the v0.6. For the latest released version, please have a look at v0.11.
LOv rewriting rules in Perceval
The aim of this notebook is to rewrite a circuit using rewriting rules based on the article: LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits.
We show how to use these rewriting rules to generate unique triangular normal forms.
[14]:
import perceval as pcvl
import perceval.lib.phys as phys
from perceval.algorithm.optimize import optimize
from perceval.algorithm.norm import frobenius
import random
This is the first rewrite rule used in this noteobok. It is the rule 37 in the article.
[2]:
pattern1=pcvl.Circuit(3, name="pattern1")//(0,phys.PS(pcvl.P("phi0")))//(0,phys.BS(theta=pcvl.P("theta1")))//(0,phys.PS(pcvl.P("phi2")))//(1,phys.PS(pcvl.P("phi1")))//(1,phys.BS(theta=pcvl.P("theta2")))//(0,phys.BS(theta=pcvl.P("theta3")))
pattern1._color = "lightgreen"
pcvl.pdisplay(pcvl.Circuit(3).add(0,pattern1,False), recursive=True)
[3]:
rewrite1=pcvl.Circuit(3, name="rewrite")//(0,phys.PS(pcvl.P("beta2")))//(1,phys.PS(pcvl.P("beta1")))//(1,phys.BS(theta=pcvl.P("alpha1")))//(0,phys.BS(theta=pcvl.P("alpha2")))//(1,phys.PS(pcvl.P("beta3")))//(1,phys.BS(theta=pcvl.P("alpha3")))//(0,phys.PS(pcvl.P("beta4")))//(1,phys.PS(pcvl.P("beta5")))//(2,phys.PS(pcvl.P("beta6")))
rewrite1._color = "lightgreen"
pcvl.pdisplay(pcvl.Circuit(3).add(0,rewrite1,False), recursive=True)
Let us implement now the rule number 1.
[4]:
pattern2=pcvl.Circuit(1, name="pattern")//phys.PS(pcvl.P("phi1"))//phys.PS(pcvl.P("phi2"))
rewrite2=pcvl.Circuit(1, name="rewrite")//phys.PS(pcvl.P("phi"))
[5]:
pcvl.pdisplay(pcvl.Circuit(1).add(0,pattern2,False), recursive=True)
[6]:
pcvl.pdisplay(pcvl.Circuit(1).add(0,rewrite2,False), recursive=True)
The third rule used in this notebook is the following one:
[7]:
pattern3=pcvl.Circuit(2, name="pattern3")//(1,phys.PS(pcvl.P("phip")))//(0,phys.BS(theta=pcvl.P("theta")))
pattern3._color = "pink"
pcvl.pdisplay(pcvl.Circuit(2).add(0,pattern3,False), recursive=True)
[8]:
rewrite3=pcvl.Circuit(2, name="rewrite3")//(0,phys.PS(pcvl.P("phi1")))//(0,phys.BS(theta=pcvl.P("theta")))//(0,phys.PS(pcvl.P("phi2")))//(1,phys.PS(pcvl.P("phi3")))
rewrite3._color = "pink"
pcvl.pdisplay(pcvl.Circuit(2).add(0,rewrite3,False), recursive=True)
And the fourth rule is the rule 38 in the article.
[9]:
pattern4=pcvl.Circuit(2, name="pattern4")//(0,phys.BS(theta=pcvl.P("theta1")))//(0,phys.PS(pcvl.P("phi1")))//(0,phys.BS(theta=pcvl.P("theta2")))
pattern4._color = "orange"
pcvl.pdisplay(pcvl.Circuit(2).add(0,pattern4,False), recursive=True)
[10]:
rewrite4=pcvl.Circuit(2, name="rewrite4")//(0,phys.PS(pcvl.P("beta1")))//(0,phys.BS(theta=pcvl.P("alpha1")))//(0,phys.PS(pcvl.P("beta2")))//(1,phys.PS(pcvl.P("beta3")))
rewrite4._color = "orange"
pcvl.pdisplay(pcvl.Circuit(2).add(0,rewrite4,False), recursive=True)
[11]:
a=pcvl.Circuit.generic_interferometer(4, lambda idx:pcvl.Circuit(2)//phys.PS(phi=random.random())//phys.BS(theta=random.random()), depth=8, shape="rectangle")
pcvl.pdisplay(a, recursive=True, render_size=0.7)
Normalizing Circuit
[12]:
import drawSvg as draw
import copy
[13]:
reverse = []
direct=[]
def draw_frame(a):
if isinstance(a, pcvl.Circuit):
d = pcvl.pdisplay(a, recursive=True, render_size=0.6)
reverse.insert(0, d)
direct.append(d)
return d
return a
rules = [(pattern1, rewrite1, "lightgreen"), (pattern2, rewrite2, "lightblue"),
(pattern3, rewrite3, "pink"), (pattern4, rewrite4, "orange")]
with draw.animate_jupyter(draw_frame, delay=0.1) as anim:
anim.draw_frame(a)
while True:
found = False
for pattern, rewrite, color in rules:
start_pos = 0
while True:
print("matching pattern", pattern._name)
matched = a.match(pattern, browse=True, pos=start_pos)
if matched is None:
break
print("matching ok", matched.v_map)
idx = a.isolate(list(matched.pos_map.keys()), color=color)
anim.draw_frame(a)
for k, v in matched.v_map.items():
pattern[k].set_value(v)
v = pattern.compute_unitary(False)
print("optimizing rewrite",rewrite._name)
res = optimize(rewrite, v, frobenius, sign=-1)
print("found params with distance", res.fun)
subc = rewrite.copy()
found = True
a.replace(idx, subc, merge=False)
anim.draw_frame(a)
a.replace(idx, subc, merge=True)
pattern.reset_parameters()
rewrite.reset_parameters()
anim.draw_frame(a)
start_pos = idx
if not found:
break
matching pattern pattern
matching pattern pattern3
matching pattern pattern4
matching pattern pattern1
matching pattern pattern
matching pattern pattern3
matching pattern pattern4
This representation is exactly the normal form that we wanted to obtain !
Reference
Clément, N. Heurtel, S. Mansfield, S. Perdrix, B. Valiron. LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits, arXiv:2204.11787 (2022).